Embedding transition-metal atoms in graphene: structure, bonding, and magnetism.
نویسندگان
چکیده
We present a density-functional-theory study of transition-metal atoms (Sc-Zn, Pt, and Au) embedded in single and double vacancies (SV and DV) in a graphene sheet. We show that for most metals, the bonding is strong and the metal-vacancy complexes exhibit interesting magnetic behavior. In particular, an Fe atom on a SV is not magnetic, while the Fe@DV complex has a high magnetic moment. Surprisingly, Au and Cu atoms at SV are magnetic. Both bond strengths and magnetic moments can be understood within a simple local-orbital picture, involving carbon sp(2) hybrids and the metal spd orbitals. We further calculate the barriers for impurity-atom migration, and they agree well with available experimental data. We discuss the experimental realization of such systems in the context of spintronics and nanocatalysis.
منابع مشابه
Ferromagnetism in semihydrogenated graphene sheet.
Single layer of graphite (graphene) was predicted and later experimentally confirmed to undergo metal-semiconductor transition when fully hydrogenated (graphane). Using density functional theory we show that when half of the hydrogen in this graphane sheet is removed, the resulting semihydrogenated graphene (which we refer to as graphone) becomes a ferromagnetic semiconductor with a small indir...
متن کاملProximity-induced magnetism in transition-metal substituted graphene
We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We ...
متن کاملTransition metal ad-atoms on graphene: Influence of local Coulomb interactions on chemical bonding and magnetic moments
متن کامل
Unique Reactivity of Transition Metal Atoms Embedded in Graphene to CO, NO, O2 and O Adsorption:
Taking the adsorption of CO, NO, O2 and O as probes, we investigated the electronic structure of transition metal atoms (TM, TM = Fe, Co, Ni, Cu and Zn) embedded in graphene by first-principles-based calculations. We showed that these TM atoms can be effectively stabilized on monovacancy defects on graphene by forming plausible interactions with the C atoms associated with dangling bonds. These...
متن کاملBond-order potential for transition metal carbide cluster for the growth simulation of a single-walled carbon nanotube
Yasushi Shibuta*, Shigeo Maruyama Department of Materials Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Department of Mechanical Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Abstract A classical multi-body potential for transition metal carbide cluster is developed in the form of the bond-order type potential function. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 102 12 شماره
صفحات -
تاریخ انتشار 2009